Chapitre 4: Les modèles linéaires

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 4: Les modèles linéaires"

Transcription

1 Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen, parmi les modèles non saionnaires, on verra les modèles ARIMA. Dans ce chapire, la méhode uilisée pour exposer les modèles linéaires es la méhode déducive. Ainsi, à parir des hypohèses iniiales, on obiendra les propriéés des différens ypes de modèles. La connaissance de ces propriéés va facilier la réalisaion de l inférence que l on verra dans les chapires suivans.

2 . Opéraeur reard: Soi (Y ) un processus sochasique. On défini l opéraeur reard L el que: LY =Y - L Y =L[LY ]=LY - =Y - En général: L k Y =Y -k On a aussi, pour c une consane: Lc=c e L(cY )=cly =cy - L k L s (Y )=L k+s (Y )=Y -k-s 3 Si LY =Y -, alors Y =L - Y -. L opéraeur reard idenique ou unié es L =I=. L applicaion de l opéraeur reard unié ne change pas la période de référence: L Y =Y. L opéraeur L peu êre uiliser pour exprimer un modèle de reards. Soi, par exemple, le modèle suivan: Y -Φ Y - -Φ Y - - -Φ p Y -p =e 4

3 Si on applique l opéraeur L, on obien [-Φ L-Φ L - -Φ p L p ]Y =e L expression enre croches s appelle opéraeur polynomial des reards e on le noe Φ(L). La lere Φ qui précède (L) indique les coefficiens qui inerviennen dans l expression de l opéraeur polynomial des reards. Donc, on peu écrire: Φ(L)Y =e. L expression Φ(L)=, s appelle équaion polynômiale Modèles auo-regressifs (AR): Dans le chapire précéden, un modèle auoregressif d ordre p, ou un modèle AR(p), a éé présené par: Y =Φ Y - +Φ Y - + +Φ p Y -p +e Où e es une variable brui blanc. En uilisan l opéraeur polynomial des reards L : Φ(L)= -Φ L-Φ L - -Φ p L p Le modèle peu s exprimer de forme simplifiée: Φ(L)Y =e 6 3

4 Par la suie, on va analyser les caracérisiques des modèles AR() e AR(). Les résulas obenus seron généralisés à un modèle AR(p). Modèle AR(): Un modèle AR() es donné par: Y =Φ Y - +e Ou, en uilisan l opéraeur reard, par: (-Φ L)Y =e. 7 Y - Y - Y Y + e - e - e e + Chaque variable brui blanc influe sur les valeurs de Y i correspondanes à la même période ou sur des périodes poserieures, mais jamais sur des périodes anérieures. Une conséquence imporane es: E[e Y -τ ]= pour ou τ> 8 4

5 La racine de l équaion polynômiale -Φ L= es L = Φ Le processus AR() es saionnaire si Donc AR() es saionnaire si Φ <. Pour analyser le comporemen du processus AR(), on supposera qu au débu le processus commence par la période N. Par des subsiuions consécuives on aura: Y =Φ [Φ Y - +e - ]+e = = + N j Φ j= e j + Φ L = Φ + N Y N > 9 Si on calcul, alors, les epérances à parir de la dernière expression, on aura: E + [ Y ] N = Φ Y N Où Y -N, qui représene les condiions iniiales, a éé considérée comme une variable non sochasique. En général, on suppose qu un processus sochasique commence en une période infinimen peie. E [ Y ] = Φ Y N + Si Φ <, alors N diminuera en valeur absolue lorsque augmene. 5

6 [ ] N + Lorsque Φ >, alors E Y N = Φ Y augmenera en valeur absolue lorsque augmene à condiion que Y -N ne soi pas exacemen égale à zero. Si Φ =, alors on vérifie que E(Y )= Y -N Si Φ = -, alors on aura une alernance de signes dans la valeur de l espérance. Par conséquen, pour un processus qui commence en un insan fini du emps, si la valeur iniiale n es pas nulle, la moyenne de Y rese consane seulemen lorsque Φ =. Mais, si le processus considéré commence en -, alors pour Φ < e pour n impore quelle valeur iniiale, on vérifie que E[Y ]=. Si on inclu une consane dans le modèle AR(), on aura Y =δ+φ Y - +e Alors, si le processus commence en - e il es saionnaire, on vérifie que la moyenne du processus sera consane pour oue valeur de : E[Y ]= E[Y - ]=µ 6

7 En prenan les espérances sur Y =δ+φ Y - +e e en enan compe que E[Y ]= E[Y - ]=µ, on obien que: δ µ = Φ Dans la suie, on supposera, sans pere de généralié, que δ=. Un processus iniié en N aura la variance suivane: γ + N [ Y E Y ] = E[ Y Φ Y ] = E ( ) N 3 γ = E + N j= Φ j e j = σ + N e j= E par la formule de la somme des ermes d une progression géomérique, on a: Φ j γ = σ e Φ Φ ( + N ) Finalemen, on peu dire que soi dans le cas Φ =, ou dans le cas Φ >, la vriance rouvée précédemen end vers l infini si le processus commence par -. Alors, on di que des processus de ces caracérisiques on une naure explosive! 4 7

8 Si le processus es saionnaire, c es-à-dire, si Φ < e il a commencé en -, on vérifie que: γ Dans ce qui sui, e sauf menion conraire, on supposera que le processus débue par - e qu il es saionnaire. Praiquemen, même si le processus débue par une valeur finie, sa variance se sabilise rapidemen au voisinage de σ e = Φ γ σ Φ e = 5 Si on muliplie les deux membres de Y =Φ Y - +e par Y -τ, on vérifie que: γ τ =E[Y Y -τ ]=Φ E[Y - Y -τ ]+E[e Y -τ ] Pourτ>, e comme dans le diagramme des flèches vu précédemen, on vérifie que: γ τ =Φ γ τ- τ> Cee dernière équaion γ τ -Φ γ τ- = es une équaion aux différences homogène de premier ordre. De même, l équaion Y -Φ Y - =e es une équaion aux différences de premier ordre mais non homogène à cause de la présence du brui blanc e. 6 8

9 Équaions aux différences: Soi le modèle suivan: Y -Φ Y - -Φ Y - - -Φ p Y -p =e Si on applique l opéraeur L, on obien [-Φ L-Φ L - -Φ p L p ]Y =e Sachan que Φ(L)= -Φ L-Φ L - -Φ p L p on peu écrire: Φ(L)Y =e Cee dernière équaion es une équaion aux différences non homogène parce que son second membre es non nul, c es e. 7 L ordre de cee équaion aux différences es l ordre de la différence la plus élevée ou encore, la variable de plus grand reardqui apparaî dans l équaion. Donc l équaion considérée ici es d ordre p. L équaion sans second membre es: Y -Φ Y - -Φ Y - - -Φ p Y -p = ou encore Φ(L)Y = c es l équaion homogène correspondane. 8 9

10 Résoudre ces équaions c es rouver une expression de Y en foncion du emps qui vérifie l équaion. Il n exise pas une soluion unique d une de ces équaions. Une soluion qui englobe oues les soluions s appelle la soluion complèe Y c. La soluion complèe es la somme de deux soluions: la soluion générale de l équaion homogène Y h e une soluion pariculière de l équaion non homogène Y p Y c =Y h +Y p 9 Résoluion de l équaion homogène: La soluion générale de l équaion homogène doi êre une foncion du emps qui vérifie l équaion Y -Φ Y - -Φ Y - - -Φ p Y -p =. Elle die générale parce qu elle doi êre valide quelques soien les condiions iniiales du processus. Essayons avec une soluion du ype: Y =λ

11 On la subsiue dans l équaion, on obien: λ -Φ λ - - -Φ p λ -p = On facorise parλ -p, on a: λ -p [λ p -Φ λ p- - -Φ p ]= Une soluion riviale qui saisfai l équaion anérieure esλ=. Ou λ p -Φ λ p- - -Φ p =, équaion qui adme p racines qu on noe λ,λ,, λ p e on l appelle équaion caracérisique. Alernaivemen, les racines peuven êre obenu à parir de l équaion polynômiale Φ(L)= ou encore -Φ L-Φ L - -Φ p L p = qui a p racines noées L,L,,L p. On peu vérifier que les racines L i son exacemen les valeurs inverses des racines λ i. En effe, si L i es une racine, on a: -Φ L i -Φ L i - -Φ p L ip = D aure par, e si λ on a: i = L i

12 p p Φ... Φ p = L i Li Si on muliplie les membres de cee équaion par L ip, on obien: -Φ L i -Φ L i - -Φ p L ip =. on aλi es une racine de l équaion caracérisique, alors Y = λ i es une soluion de l équaion homogène aux différences. On l appelle soluion basique. Deux héorèmes imporans s uilisen pour obenir la soluion générale: 3 Le premier héorème di que si λ i es une soluion e A i es une consane arbiraire, alors Y =A i λ i es aussi une soluion. En effe, en subsiuan cee valeur dans l équaion Y -Φ Y - -Φ Y - - -Φ p Y -p = e en facorisan par A i λ i -p, on obien: A i λ i -p [λ ip -Φ λ i p- - -Φ p ]= puisque l expression enre croches es égale à. 4

13 Par conséquen, A λ, A λ,, A m λ m ou A, A,, A m son des des consanes arbiraires, son aussi des soluions de l équaion homogène. C es à dire, les muliplicaions d une soluion basique par une consane arbiraire son des soluions. Le deuxième héorème di que si λ i e λ j son des soluions de l équaion homogène, alors une combinaison linéaire des deux soluions A i λ i +A j λ j es aussi une soluion de l équaion homogène. 5 Cee propriéé se vérifie en subsiuan l expression anérieure dans l équaion homogène: (A i λ i +A j λ j ) -Φ (A i λ i - +A j λ j - ) - -Φ p (A i λ i -p +A j λ j -p ) = Puis, on facorise par A i λ i -p d une par e par A j λ j -p d aure par, on obien: A i λ i -p [λ ip -Φ λ i p- - -Φ p ]+A j λ j -p [λ jp -Φ λ j p- - -Φ p ]= Puisque les deux expression enre croches son nulles. 6 3

14 Ce deuxième héorème perme d éablir qu une combinaison linéaire des deux soluions es aussi une soluion. Précisémen, la soluion générale de l équaion homogène es composée par les p soluions basiques, mulipliées par des consanes arbiraires. C es à dire: Y h =Y =A λ +A λ + +A p λ p qui es la soluion générale de l équaion homogène. 7 Il es inéressan d analyser le comporemen de Y lorsque augmene indéfinimen. D après l expression précédene de Y, on peu remarquer que lorsque λ i <, i, alors lorsque, il arrive que Y indépendemen des valeurs des consanes arbiraires. On di alors que le sysème es sable. Pour les processus sochasiques, on uilise pluô le erme saionnaire. Une condiion nécessaire e suffisane de sabilié ou de saionarié es donc λ i <, i. 8 4

15 La soluion générales es valable pour n impore quelles valeurs des consanes arbiraires. Mais en praique, on leur donne des valeurs obenues à parir des condiions iniiales. Ainsi, si on suppose que les valeurs Y, Y,, Y p- correspondanes aux périodes =, =,, =p- respecivemen, on peu considérer le sysème de p- équaions suivan: 9 Y =A +A + +A p Y =A λ +A λ + +A p λ p Y p- =A λ p- +A λ p- + +A p λ p p- Dans ce sysème, les inconnus seron A, A,,A p, alors que Y, Y,, Y p- eλ,λ,,λ p seron données. 3 5

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Série n 2 : Résolution numériques des EDO.

Série n 2 : Résolution numériques des EDO. Universié Claude Bernard, Lyon I Licence Sciences & Tecnologies 43, boulevard 11 novembre 1918 Spécialié Maémaiques 696 Villeurbanne cedex, France Opion: MAO 007-008 Série n : Résoluion numériques des

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

EC 4 Circuits linéaires du second ordre en régime transitoire

EC 4 Circuits linéaires du second ordre en régime transitoire 4 ircuis linéaires du second ordre en régime ransioire PSI 016 017 I Réponse d un circui RL série à un échelon de ension 1. ircui R L i() u G () +q ¹ 1 u R () u L () u () On ferme l inerrupeur K à = 0,

Plus en détail

Correction du concours blanc

Correction du concours blanc L.E.G.T.A. Le Chesnoy TB - D. Bloière Mahémaiques Correcion du concours blanc Problème Probabiliés Un mobile se déplace aléaoiremen le long d un ae horional d origine O, sur des poins de coordonnées enières,

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Logique combinatoire : Partie 1

Logique combinatoire : Partie 1 1. Inroducion Lorsqu'on exprime les variables de sories uniquemen en foncion des variables d'enrées, le problème à résoudre relève de la logique combinaoire. Auremen di à chaque combinaison des variables

Plus en détail

Exercices sur les intégrales généralisées

Exercices sur les intégrales généralisées hp://wwwmycppfr Eercices sur les séries numériques novembre Eercices sur les inégrales généralisées Inroducion Inégrales généralisées Convergence, définiion, crière de comparaison Eercice Convergence,

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

SECONDE PARTIE - ELECTRONIQUE -

SECONDE PARTIE - ELECTRONIQUE - ENS de Cachan Concours d enrée en 3 ème année pour la préparaion à l agrégaion de Génie Elecrique Session 2001 SECONDE PARTIE - ELECTRONIUE - Ce problème se propose d éudier le foncionnemen de l élecronique

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages

Chapitre 3. Pourcentages. Objectifs du chapitre : item références auto évaluation. relier évolutions et pourcentages Chapire 3 Pourcenages Objecifs du chapire : iem références auo évaluaion relier évoluions e pourcenages éudier des évoluions successives calculer le aux d évoluion réciproque 19 I lien enre une évoluion

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

Exercices sur les représentations paramétriques de droites et de plans

Exercices sur les représentations paramétriques de droites et de plans TS Exercices sur les représenaions paramériques de droies e de plans Le plan es muni d un repère O, i, j x Déerminer un repère de la droie D admean pour sysème d équaions paramériques y e racer D ( ) 6

Plus en détail

CHAPITRE III : LES COMPTEURS

CHAPITRE III : LES COMPTEURS CHAPITRE III : LES COMPTEURS I. Inroducion Dans de nombreuses applicaions on es amené à faire des compages d impulsions dans un emps donné pour la mesure de fréquences (par exemple) ou ou simplemen comper

Plus en détail

Contrôle de physique n 4

Contrôle de physique n 4 Conrôle de physique n 4 Un groupe délèves musiciens souhaie réaliser un diapason élecronique capable démere des sons purs, en pariculier la noe la 3 (noe la roisième ocave). Cee noe ser de référence aux

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU

Solutionnaire Physique 1, Électricité et Magnétisme, Harris Benson LES CIRCUITS À COURANT CONTINU Soluionnaire hysique, Élecricié e Magnéisme, Harris Benson Soluionnaire rédigé par Maxime Verreaul, professeur CHATE 7 LES CCUTS À COUANT CONTNU 7 FAUX. Le couran es le même en ou poin du circui. 7 Comme

Plus en détail

Minisère de l éducaion & de la formaion D. R. E. N Lycée Secondaire -Haouaria Devoir de conrôle N 1 Classes : 4 e Sc- Exp & Mah Dae : 15/11 /2008 Durée : 2 H Maière : Sciences Physiques profs: Laroussi

Plus en détail

Modèles stochastiques. Chaînes de Markov discrètes

Modèles stochastiques. Chaînes de Markov discrètes odèles sochasiques Chaînes de arkov discrèes 1. Processus sochasique discre { } Suie de variables aléaoires X, T T es un ensemble d'eniers non-négaifs e X représene une mesure d'une caracérisique au emps

Plus en détail

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que

PROPORTIONNALITE. Quatre nombres a, b, c et d étant non nuls, on dit que PROPORTIONNALITE a) Définiion d une proporion a Quare nombres a, b, c e d éan non nuls, on di que c l une des condiions suivanes (équivalenes) es vérifiée : b d es une proporion lorsque Condiion 1 : Les

Plus en détail

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction

Mémoire soutenu pour l Institut des Actuaires le 15 décembre David Sudries Introduction Modélisaion e exrapolaion de l évoluion de la moralié française à parir de modèles sochasiques Analyse des qualiés prédicives de ces modèles Applicaions praiques Mémoire souenu pour l Insiu des Acuaires

Plus en détail

REPONSE DES CIRCUITS A UN ECHELON DE TENSION

REPONSE DES CIRCUITS A UN ECHELON DE TENSION LTOINTIQU Duperray Lycée FBUISSON PTSI PONS DS IUITS A UN HLON D TNSION Dans les circuis élecriques, les régimes on oujours un débu Nous allons éudier commen à parir des condiions iniiales, les courans

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

Circuits R -C Réponse à un échelon de tension

Circuits R -C Réponse à un échelon de tension Lycée Viee TSI ircuis - -L -L- éponse à un échelon de ension I. égime libre. Définiion d un régime libre Le régime libre ( ou propre ) d un circui es un régime obenu lorsque les sources libres son éeines.

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Traitement du signal

Traitement du signal Spé ψ 6- evoir n Traiemen du signal EXTAIT E E3A PSI Quesion 9 Analyse de l ALI enrée ( : v = par consrucion ; enrée ( : i = donc U v = I relaion enrée-sorie : l ALI es bouclé sur son enrée inverseuse

Plus en détail

+ - Chapitre 6 : Etude du dipôle R C.

+ - Chapitre 6 : Etude du dipôle R C. Chapire 6 : Eude du dipôle R C. I. Le condensaeur. Connaîre la représenaion symbolique d'un condensaeur. En uilisan la convenion récepeur, savoir oriener un circui sur un schéma, représener les différenes

Plus en détail

CORRECTION des EXERCICES de RADIOACTIVITE

CORRECTION des EXERCICES de RADIOACTIVITE CORRECTIO des EXERCICES de RDIOCTIVITE.1. Désinégraion du carbone 14. On donne Les numéros aomiques suivans : Z 6 pour le carbone (C) e Z 7 pour l azoe (). Pourquoi les noyaux de symboles 1 6 C e 13 6

Plus en détail

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt CORRIGE DU SUJET Problème. On écri le développemen limié à l ordre 3 de sin en : donc ϕx) x x x x sinx) x x x3 6 + ox3 ) 6 + ox ) ) x x x ) + x 6 + ox ) Ainsi ϕx) x 6 x+ox) La foncion ϕ possède un développemen

Plus en détail

Jean-Louis CAYATTE

Jean-Louis CAYATTE Jean-Louis CAYATTE hp://jlcayae.free.fr/ jlcayae@free.fr Chapire 4 La durée du chômage Quand on parle de la durée du chômage, si l on n y prend pas garde, on confond facilemen la durée moyenne du chômage

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

Mathématiques Financières

Mathématiques Financières Mahémaiques Financières ------------------------------------------------------- 4 ème parie - Marchés financiers en emps coninu & modélisaion des acions Universié de Picardie Jules Verne Amiens Jean-Paul

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

Correction de l exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation»

Correction de l exercice 1 du cours Management Bancaire : «Calcul de la VaR d une obligation» Correcion de l exercice du cours Managemen Bancaire : «Calcul de la VaR d une obligaion» Quesion : calculer numériquemen la duraion e la convexié de l obligaion de coure maurié e de l obligaion de longue

Plus en détail

Temporisation par bascules monostables

Temporisation par bascules monostables Temporisaion par bascules Monosables TSTI 00-0 Chrisian Loverde Temporisaion par bascules monosables Rappels :. Charge d un condensaeur à ension consane i R C Débu de la charge u C (0)= 0 V u C A la fin

Plus en détail

Fiche d exercices 12 : Lois normales

Fiche d exercices 12 : Lois normales Fiche d exercices 1 : Lois normales Exercice 1 Loi normale cenrée e réduie N (0,1) Une variable aléaoire Z sui la loi N (0,1). On donne P ( Z 1,8 ) 0, 964 e P ( Z,3) 0, 989. Calculer les probabiliés suivanes

Plus en détail

Le transistor bipolaire

Le transistor bipolaire Le ransisor bipolaire onsiuion- Symbole 2 1. aracérisiques Foncionnemen 2 1.1. aracérisiques d enrée I =f(v E ) 2 1.2. aracérisiques de Transfer I =f(i ) 3 aracérisiques de sorie I =f(v E ) 4 1.4. Résumé

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

Les fonctions logiques & l algèbre de Boole

Les fonctions logiques & l algèbre de Boole Les foncions logiques & l algèbre de Boole 1 - Algèbre de Boole Hisorique : Georges BOOLE, philosophe e mahémaicien anglais, publia en 1854 un essai sur les raisonnemens logiques poran sur les proposiions

Plus en détail

1 Représentation des fonctions élémentaires de l'électronique

1 Représentation des fonctions élémentaires de l'électronique EN1 Foncions e composans élémenaires de l élecronique Foncions élémenaires de l'élecronique Les foncions élémenaires de l'élecronique son celles que l'on rerouve régulièremen dans les différenes applicaions

Plus en détail

Logique Séquentielle - fonction «Registre à décalage»

Logique Séquentielle - fonction «Registre à décalage» Logique Séquenielle - foncion «Regisre à décalage» 1. Inroducion Les bascules son rès uilisées comme élémens de mémorisaion de données ou d informaion. Le sockage des données a généralemen lieu dans des

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant :

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant : Chapire 7 Espérance 7. Inroducion espérance d une variable aléaoire es, lorsqu elle exise, la moyenne des valeurs de cee variable, pondérées par leurs probabiliés de réalisaion. On voi L bien commen raduire

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonne Maser GSI - Capeurs Chaînes de Mesures 1 Plan du Cours Propriéés générales des capeurs Noion de mesure Noion de capeur: principes, classes, caracérisiques

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Module TS (Théorie de Signal)

Module TS (Théorie de Signal) Module TS (Théorie de Signal) Conenu de Module Chap1 : Signaux, Foncions e Opéraeurs de base. Chap2 : Classificaion des Signaux. Chap3 : Séries e Transformée de Fourier. Chap4 : Convoluion e Corrélaion.

Plus en détail

DIPÔLE CONDENSATEUR-DIPÔLE RC

DIPÔLE CONDENSATEUR-DIPÔLE RC HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

Travaux dirigés - L3 DIM Traitement Numérique du Signal

Travaux dirigés - L3 DIM Traitement Numérique du Signal Faculé des sciences e d ingénierie. Universié Paul Sabaier Travaux dirigés - L3 DIM Traiemen Numérique du Signal Exercice n o : Soi le signal x)=3 cos00 Π ). Calculez la valeur des échanillons de x) si

Plus en détail

Réponse d un dipôle RC à un échelon de tension

Réponse d un dipôle RC à un échelon de tension 1- Le dipôle C es une associaion en série d un condensaeur e d un conduceur ohmique ( ou résisor) : I- Inroducion 2- L échelon de ension : es le passage insanané d une ension de la valeur à une valeur

Plus en détail

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe

11 G 18bis A 01 Durée: 4 heures Séries : S1-S3 - Coeff. 8.. Epreuve du 1 er groupe UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/ 11 OFFICE DU BACCALAUREAT BP 55-DAKAR-Fann-Sénégal Serveur Vocal: 68 5 59 Téléfa (1) 864 67 39 - Tél : 84 95 9-84 65 81 M A T H E M A T I Q U E S 11 G 18bis A 1

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Représenaion emporelle

Plus en détail

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan Fiche de Biosaisique Exercices d'algèbre Soluions proposées par C. BAJARD e S. CHARLES Plan INDÉPENDANCE, GÉNÉRATEUR, DIMENSION, BASES... MÉTHODE DU PIVOT...4 PRODUITS SCALAIRES... 6 ORTHONORMALISATION...

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Analyse numérique des équations différentielles

Analyse numérique des équations différentielles Analse numérique des équaions différenielles Grégor Vial mars Le bu de ces quelques pages es de monrer commen programmer facilemen e efficacemen les schémas classiques de résoluion numérique des équaions

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

Triangularisation, jordanisation, exponentielle de matrices

Triangularisation, jordanisation, exponentielle de matrices Triangularisaion, jordanisaion, exponenielle de marices 1 Triangularisaion Soien E un espace vecoriel de dimension n e ϕ un endomorphisme de E de marice A dans une base donnée. On suppose que le polynôme

Plus en détail

Représentations multiples d un signal électrique triphasé

Représentations multiples d un signal électrique triphasé Représenaions muliples d un signal élecrique riphasé Les analyseurs de puissance e d énergie Qualisar+ permeen de visualiser insananémen les caracérisiques d un réseau élecrique riphasé. Les Qualisar+

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

Mathématiques discrètes Chapitre 2 : Théorie des ensembles

Mathématiques discrètes Chapitre 2 : Théorie des ensembles U.P.S. I.U.T., Déparemen d Informaique nnée 9- Mahémaiques discrèes Chapire : Théorie des ensembles. Définiions Définiion On appelle ensemble oue collecion d objes caracérisés par une propriéé commune.

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

Chapitre 2 : LOGIQUE SÉQUENTIELLE

Chapitre 2 : LOGIQUE SÉQUENTIELLE Chapire 2 : Logique séquenielle Chapire 2 : LOGIUE ÉUENTIELLE INTODUCTION Dans le chapire précéden, nous avons considéré des sysèmes don le comporemen es qualifié de combinaoire dans la mesure où les évoluions

Plus en détail

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure

Modélisation et optimisation de la maintenance préventive et corrective d un matériel soumis à usure TP SdF N 25 Modélisaion e opimisaion de la mainenance prévenive e correcive d un maériel soumis à usure Ce TP complèe le TP N 22 sur la modélisaion e l opimisaion de la mainenance d un maériel réparable

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPREILS DE MESURE EN COURANT ALTERNATIF I- PARAMETRES CARACTERISTIQUES D UN SIGNAL ALTERNATIF : Un signal alernaif es caracérisé par sa forme (sinus, carré, den de scie, ), sa période (

Plus en détail

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION

CHAÎNE D ACTION. écart Réguler. mesure Mesurer CHAÎNE D INFORMATION ANALYSE DES SYSTÈMES ASSERVIS 7. Caracérisaion des sysèmes asservis 7.. Srucure des sysèmes asservis Un sysème asservi linéaire peu se représener par le schéma 7.. On y rerouve, une chaîne d acion qui

Plus en détail

CHAPITRE 7 ANALYSE DES STRATIFIES

CHAPITRE 7 ANALYSE DES STRATIFIES Mécanique des maériau composies Chapire 7 nalse des sraifiés H 4 CHPITRE 7 LYSE ES STRTIFIES 7. Inroducion L empilemen de plusieurs plis de différenes orienaions qui son collés ensemble forme un sraifié.

Plus en détail

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction.

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction. Universié Claude Bernard Lyon I Licence roisième année : calcul différeniel Année 2004-2005 Quelques correcions. 1 Correcions d exercices sur la feuille numéro 2 : différenielle d une foncion. Correcion

Plus en détail

Chapitre 2 : Estimation de la tendance.

Chapitre 2 : Estimation de la tendance. Séries chronologiques (/6) Chapire : Esimaion de la endance. I. Ajusemen :. Méhode de Mayer : ajusemen par une droie : On ajuse le nuage de poins ( ; Y) par une droie passan par deux poins calculés : On

Plus en détail

La fonction générer un signal rectangulaire

La fonction générer un signal rectangulaire Sie Inerne : www.gecif.ne Discipline : Génie Elecrique La foncion générer un signal recangulaire I Idenificaion de la foncion Générer un signal élecrique consise à produire des variaions de ension don

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

ESD : Loi exponentielle

ESD : Loi exponentielle Aueur du corrigé : Gilber Julia ESD 2008 0702 : Loi exponenielle Averissemen : ce documen a éé réalisé avec la version 14 de TI-Nspire Fichier associé : esd2008_0702ns 1 Le suje L exercice proposé au candida

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES PC Dae de créaion 006 Cours, Exercices, Aueur (s) de la ressource pédagogique : FACK Hélène [FACK Hélène], [04], INSA de Lyon, ous drois réservés. Sommaire EQUATIONS DIFFERENTIELLES

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

IDENTIFICATION d'un SYSTEME par. UTILISATION des METHODES TEMPS- FREQUENCE. (réponse impulsionnelle, produit de convolution, réponse indicielle)

IDENTIFICATION d'un SYSTEME par. UTILISATION des METHODES TEMPS- FREQUENCE. (réponse impulsionnelle, produit de convolution, réponse indicielle) Dep GEII IUT Bordeaux I IDENTIFICATION d'un SYSTEME par UTILISATION des METHODES TEMPS- FREQUENCE (réponse impulsionnelle, produi de convoluion, réponse indicielle) (Vol. 2) G. Couurier Tel : 5 56 84 57

Plus en détail

LOIS FONDAMENTALES EN COURANT CONTINU

LOIS FONDAMENTALES EN COURANT CONTINU Chapire : LOS FONMENTLES EN CONT CONTN u cours de ce chapire, nous apprendrons à connaîre les grandeurs fondamenales que son le couran e la ension, à éablir e à appliquer les lois fondamenales dies des

Plus en détail

Résolution numérique de problèmes de contrôle optimal via la condition nécessaire, application au problème de transfert d orbite à faible poussée

Résolution numérique de problèmes de contrôle optimal via la condition nécessaire, application au problème de transfert d orbite à faible poussée Résoluion numérique de problèmes de conrôle opimal via la condiion nécessaire, applicaion au problème de ransfer d orbie à faible poussée Présenaion TIPE 23: conrôle opimal 4 janvier 23 Lycée Ferma Toulouse

Plus en détail